home *** CD-ROM | disk | FTP | other *** search
Unknown | 1996-07-12 | 7.9 KB |
open in:
MacOS 8.1
|
Win98
|
DOS
view JSON data
|
view as text
This file was not able to be converted.
This format is not currently supported by dexvert.
Confidence | Program | Detection | Match Type | Support
|
---|
1%
| dexvert
| Eclipse Tutorial (other/eclipseTutorial)
| ext
| Unsupported |
1%
| dexvert
| JuggleKrazy Tutorial (other/juggleKrazyTutorial)
| ext
| Unsupported |
100%
| file
| data
| default
| |
100%
| gt2
| Kopftext: 'TUTOR 06'
| default (weak)
|
|
hex view+--------+-------------------------+-------------------------+--------+--------+
|00000000| 54 55 54 4f 52 20 30 36 | b5 1e 00 00 d6 00 00 00 |TUTOR 06|........|
|00000010| 53 65 63 74 69 6f 6e 20 | 31 2e 34 20 20 51 75 61 |Section |1.4 Qua|
|00000020| 64 72 61 74 69 63 20 45 | 71 75 61 74 69 6f 6e 73 |dratic E|quations|
|00000030| 20 61 6e 64 20 41 70 70 | 6c 69 63 61 74 69 6f 6e | and App|lication|
|00000040| 73 0d 0b 00 46 6f 72 20 | 6d 6f 72 65 20 70 72 61 |s...For |more pra|
|00000050| 63 74 69 63 65 3a 0d 0a | 00 0d 0a 00 20 20 20 20 |ctice:..|.... |
|00000060| 20 10 31 2d 34 2d 33 0e | 78 31 2d 34 0e 45 78 65 | .1-4-3.|x1-4.Exe|
|00000070| 72 63 69 73 65 73 0f 0d | 0a 00 20 20 20 20 20 10 |rcises..|.. .|
|00000080| 31 2d 34 2d 32 0e 65 31 | 2d 34 0e 47 75 69 64 65 |1-4-2.e1|-4.Guide|
|00000090| 64 20 45 78 65 72 63 69 | 73 65 73 0f 0d 0a 00 0d |d Exerci|ses.....|
|000000a0| 0a 00 54 6f 70 69 63 73 | 20 66 6f 72 20 65 78 70 |..Topics| for exp|
|000000b0| 6c 6f 72 61 74 69 6f 6e | 3a 0d 0a 00 0d 0a 00 20 |loration|:...... |
|000000c0| 20 20 20 20 0e 73 31 2d | 34 2d 31 0e 44 65 66 69 | .s1-|4-1.Defi|
|000000d0| 6e 69 74 69 6f 6e 20 6f | 66 20 61 20 51 75 61 64 |nition o|f a Quad|
|000000e0| 72 61 74 69 63 20 45 71 | 75 61 74 69 6f 6e 0f 0d |ratic Eq|uation..|
|000000f0| 0a 00 20 20 20 20 20 0e | 73 31 2d 34 2d 32 0e 53 |.. .|s1-4-2.S|
|00000100| 6f 6c 76 69 6e 67 20 61 | 20 51 75 61 64 72 61 74 |olving a| Quadrat|
|00000110| 69 63 20 45 71 75 61 74 | 69 6f 6e 20 62 79 20 46 |ic Equat|ion by F|
|00000120| 61 63 74 6f 72 69 6e 67 | 0f 0d 0a 00 20 20 20 20 |actoring|.... |
|00000130| 20 0e 73 31 2d 34 2d 33 | 0e 53 6f 6c 76 69 6e 67 | .s1-4-3|.Solving|
|00000140| 20 61 20 51 75 61 64 72 | 61 74 69 63 20 45 71 75 | a Quadr|atic Equ|
|00000150| 61 74 69 6f 6e 20 62 79 | 20 45 78 74 72 61 63 74 |ation by| Extract|
|00000160| 69 6e 67 20 53 71 75 61 | 72 65 20 52 6f 6f 74 73 |ing Squa|re Roots|
|00000170| 0f 0d 0a 00 20 20 20 20 | 20 0e 73 31 2d 34 2d 34 |.... | .s1-4-4|
|00000180| 0e 53 6f 6c 76 69 6e 67 | 20 61 20 51 75 61 64 72 |.Solving| a Quadr|
|00000190| 61 74 69 63 20 45 71 75 | 61 74 69 6f 6e 20 62 79 |atic Equ|ation by|
|000001a0| 20 43 6f 6d 70 6c 65 74 | 69 6e 67 20 74 68 65 20 | Complet|ing the |
|000001b0| 53 71 75 61 72 65 0f 0d | 0a 00 20 20 20 20 20 0e |Square..|.. .|
|000001c0| 73 31 2d 34 2d 35 0e 41 | 70 70 6c 69 63 61 74 69 |s1-4-5.A|pplicati|
|000001d0| 6f 6e 73 20 49 6e 76 6f | 6c 76 69 6e 67 20 51 75 |ons Invo|lving Qu|
|000001e0| 61 64 72 61 74 69 63 20 | 45 71 75 61 74 69 6f 6e |adratic |Equation|
|000001f0| 73 0f 0d 0a 00 20 20 20 | 20 20 0e 73 31 2d 34 2d |s.... | .s1-4-|
|00000200| 36 0e 54 68 65 20 51 75 | 61 64 72 61 74 69 63 20 |6.The Qu|adratic |
|00000210| 46 6f 72 6d 75 6c 61 0f | 0d 0a 00 20 20 20 20 20 |Formula.|... |
|00000220| 0e 73 31 2d 34 2d 37 0e | 53 6f 6c 75 74 69 6f 6e |.s1-4-7.|Solution|
|00000230| 73 20 6f 66 20 61 20 51 | 75 61 64 72 61 74 69 63 |s of a Q|uadratic|
|00000240| 20 45 71 75 61 74 69 6f | 6e 0f 0d 0a 00 53 65 63 | Equatio|n....Sec|
|00000250| 74 69 6f 6e 20 31 2e 34 | 20 20 51 75 61 64 72 61 |tion 1.4| Quadra|
|00000260| 74 69 63 20 45 71 75 61 | 74 69 6f 6e 73 20 61 6e |tic Equa|tions an|
|00000270| 64 20 41 70 70 6c 69 63 | 61 74 69 6f 6e 73 0d 0b |d Applic|ations..|
|00000280| 00 41 20 12 31 71 75 61 | 64 72 61 74 69 63 20 65 |.A .1qua|dratic e|
|00000290| 71 75 61 74 69 6f 6e 12 | 30 20 69 6e 20 11 33 78 |quation.|0 in .3x|
|000002a0| 20 11 31 69 73 20 61 6e | 20 65 71 75 61 74 69 6f | .1is an| equatio|
|000002b0| 6e 20 74 68 61 74 20 63 | 61 6e 20 62 65 20 77 72 |n that c|an be wr|
|000002c0| 69 74 74 65 6e 20 69 6e | 20 74 68 65 20 12 31 73 |itten in| the .1s|
|000002d0| 74 61 6e 64 61 72 64 0d | 0a 00 66 6f 72 6d 12 30 |tandard.|..form.0|
|000002e0| 0d 0a 00 20 20 20 20 20 | 20 20 20 20 11 32 32 0d |... | .22.|
|000002f0| 0b 00 20 20 20 20 20 20 | 20 11 33 61 78 20 20 11 |.. | .3ax .|
|00000300| 31 2b 20 11 33 62 78 20 | 11 31 2b 20 11 33 63 20 |1+ .3bx |.1+ .3c |
|00000310| 11 31 3d 20 30 0d 0a 00 | 0d 0b 00 77 68 65 72 65 |.1= 0...|...where|
|00000320| 20 11 33 61 11 31 2c 20 | 11 33 62 11 31 2c 20 61 | .3a.1, |.3b.1, a|
|00000330| 6e 64 20 11 33 63 11 31 | 2c 20 61 72 65 20 72 65 |nd .3c.1|, are re|
|00000340| 61 6c 20 6e 75 6d 62 65 | 72 73 20 77 69 74 68 20 |al numbe|rs with |
|00000350| 11 33 61 20 11 34 3d 20 | 11 31 30 2e 20 20 41 6e |.3a .4= |.10. An|
|00000360| 6f 74 68 65 72 20 6e 61 | 6d 65 20 66 6f 72 20 61 |other na|me for a|
|00000370| 20 71 75 61 64 72 61 74 | 69 63 0d 0a 00 65 71 75 | quadrat|ic...equ|
|00000380| 61 74 69 6f 6e 20 69 6e | 20 11 33 78 20 11 31 69 |ation in| .3x .1i|
|00000390| 73 20 61 20 12 31 73 65 | 63 6f 6e 64 2d 64 65 67 |s a .1se|cond-deg|
|000003a0| 72 65 65 20 70 6f 6c 79 | 6e 6f 6d 69 61 6c 20 65 |ree poly|nomial e|
|000003b0| 71 75 61 74 69 6f 6e 20 | 69 6e 20 11 33 78 11 31 |quation |in .3x.1|
|000003c0| 12 30 2e 0d 0a 00 0d 0b | 00 54 68 65 20 65 71 75 |.0......|.The equ|
|000003d0| 61 74 69 6f 6e 73 20 6c | 69 73 74 65 64 20 62 65 |ations l|isted be|
|000003e0| 6c 6f 77 20 61 72 65 20 | 61 6c 6c 20 71 75 61 64 |low are |all quad|
|000003f0| 72 61 74 69 63 20 65 71 | 75 61 74 69 6f 6e 73 20 |ratic eq|uations |
|00000400| 69 6e 20 11 33 78 11 31 | 2e 0d 0a 00 0d 0b 00 20 |in .3x.1|....... |
|00000410| 20 20 20 20 20 20 20 11 | 32 32 0d 0b 00 20 20 20 | .|22... |
|00000420| 20 20 20 20 11 33 78 20 | 20 11 31 2d 20 33 11 33 | .3x | .1- 3.3|
|00000430| 78 20 11 31 2b 20 32 20 | 3d 20 30 20 20 20 20 20 |x .1+ 2 |= 0 |
|00000440| 20 11 34 35 35 35 36 20 | 20 20 20 20 20 11 33 61 | .45556 | .3a|
|00000450| 20 11 31 3d 20 31 2c 20 | 11 33 62 20 11 31 3d 20 | .1= 1, |.3b .1= |
|00000460| 2d 33 2c 20 11 33 63 20 | 11 31 3d 20 32 0d 0a 00 |-3, .3c |.1= 2...|
|00000470| 0d 0b 00 20 20 20 20 20 | 20 20 20 20 11 32 32 0d |... | .22.|
|00000480| 0b 00 20 20 20 20 20 20 | 20 11 31 32 11 33 78 20 |.. | .12.3x |
|00000490| 20 11 31 2b 20 11 33 78 | 20 11 31 2d 20 35 20 3d | .1+ .3x| .1- 5 =|
|000004a0| 20 30 20 20 20 20 20 20 | 11 34 35 35 35 36 20 20 | 0 |.45556 |
|000004b0| 20 20 20 20 11 33 61 20 | 11 31 3d 20 32 2c 20 11 | .3a |.1= 2, .|
|000004c0| 33 62 20 11 31 3d 20 31 | 2c 20 11 33 63 20 11 31 |3b .1= 1|, .3c .1|
|000004d0| 3d 20 2d 35 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |= -5....|.. |
|000004e0| 20 20 11 32 32 0d 0b 00 | 20 20 20 20 20 20 11 31 | .22...| .1|
|000004f0| 2d 11 33 78 20 20 11 31 | 2b 20 34 11 33 78 20 11 |-.3x .1|+ 4.3x .|
|00000500| 31 2b 20 32 20 3d 20 30 | 20 20 20 20 20 20 11 34 |1+ 2 = 0| .4|
|00000510| 35 35 35 36 20 20 20 20 | 20 20 11 33 61 20 11 31 |5556 | .3a .1|
|00000520| 3d 20 2d 31 2c 20 11 33 | 62 20 11 31 3d 20 34 2c |= -1, .3|b .1= 4,|
|00000530| 20 11 33 63 20 11 31 3d | 20 32 0d 0a 00 0d 0b 00 | .3c .1=| 2......|
|00000540| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 32 0d | | .22.|
|00000550| 0b 00 20 20 20 20 20 20 | 20 20 20 20 11 31 32 11 |.. | .12.|
|00000560| 33 78 20 20 11 31 2b 20 | 33 11 33 78 20 11 31 3d |3x .1+ |3.3x .1=|
|00000570| 20 30 20 20 20 20 20 20 | 11 34 35 35 35 36 20 20 | 0 |.45556 |
|00000580| 20 20 20 20 11 33 61 20 | 11 31 3d 20 32 2c 20 11 | .3a |.1= 2, .|
|00000590| 33 62 20 11 31 3d 20 33 | 2c 20 11 33 63 20 11 31 |3b .1= 3|, .3c .1|
|000005a0| 3d 20 30 0d 0a 00 0d 0b | 00 20 20 20 20 20 20 20 |= 0.....|. |
|000005b0| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 20 20 20 20 | .2|2... |
|000005c0| 20 20 20 20 20 20 20 11 | 31 35 11 33 78 20 20 11 | .|15.3x .|
|000005d0| 31 2d 20 33 20 3d 20 30 | 20 20 20 20 20 20 11 34 |1- 3 = 0| .4|
|000005e0| 35 35 35 36 20 20 20 20 | 20 20 11 33 61 20 11 31 |5556 | .3a .1|
|000005f0| 3d 20 35 2c 20 11 33 62 | 20 11 31 3d 20 30 2c 20 |= 5, .3b| .1= 0, |
|00000600| 11 33 63 20 11 31 3d 20 | 2d 33 0d 0a 00 53 65 63 |.3c .1= |-3...Sec|
|00000610| 74 69 6f 6e 20 31 2e 34 | 20 20 51 75 61 64 72 61 |tion 1.4| Quadra|
|00000620| 74 69 63 20 45 71 75 61 | 74 69 6f 6e 73 20 61 6e |tic Equa|tions an|
|00000630| 64 20 41 70 70 6c 69 63 | 61 74 69 6f 6e 73 0d 0b |d Applic|ations..|
|00000640| 00 12 31 46 61 63 74 6f | 72 69 6e 67 12 30 20 69 |..1Facto|ring.0 i|
|00000650| 73 20 6f 6e 65 20 6d 65 | 74 68 6f 64 20 66 6f 72 |s one me|thod for|
|00000660| 20 73 6f 6c 76 69 6e 67 | 20 71 75 61 64 72 61 74 | solving| quadrat|
|00000670| 69 63 20 65 71 75 61 74 | 69 6f 6e 73 2e 20 20 52 |ic equat|ions. R|
|00000680| 65 6d 65 6d 62 65 72 2c | 20 74 6f 20 73 6f 6c 76 |emember,| to solv|
|00000690| 65 0d 0a 00 62 79 20 66 | 61 63 74 6f 72 69 6e 67 |e...by f|actoring|
|000006a0| 2c 20 77 65 20 6d 75 73 | 74 20 66 69 72 73 74 20 |, we mus|t first |
|000006b0| 70 75 74 20 74 68 65 20 | 65 71 75 61 74 69 6f 6e |put the |equation|
|000006c0| 20 69 6e 20 73 74 61 6e | 64 61 72 64 20 66 6f 72 | in stan|dard for|
|000006d0| 6d 2e 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |m.... | |
|000006e0| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 20 20 20 20 | .2|2... |
|000006f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 33 78 20 | | .3x |
|00000700| 20 11 31 2b 20 33 11 33 | 78 20 11 31 3d 20 31 30 | .1+ 3.3|x .1= 10|
|00000710| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000720| 20 20 20 20 12 31 11 32 | 47 69 76 65 6e 20 65 71 | .1.2|Given eq|
|00000730| 75 61 74 69 6f 6e 11 31 | 12 30 0d 0a 00 20 20 20 |uation.1|.0... |
|00000740| 20 20 20 20 20 20 20 20 | 20 11 32 32 0d 0b 00 20 | | .22... |
|00000750| 20 20 20 20 20 20 20 20 | 20 20 11 33 78 20 20 11 | | .3x .|
|00000760| 31 2b 20 33 11 33 78 20 | 11 31 2d 20 31 30 20 3d |1+ 3.3x |.1- 10 =|
|00000770| 20 30 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | 0 | |
|00000780| 20 20 20 20 20 20 20 12 | 31 11 32 53 74 61 6e 64 | .|1.2Stand|
|00000790| 61 72 64 20 66 6f 72 6d | 11 31 12 30 0d 0a 00 0d |ard form|.1.0....|
|000007a0| 0b 00 54 68 65 6e 20 77 | 65 20 66 61 63 74 6f 72 |..Then w|e factor|
|000007b0| 2c 20 61 6e 64 20 73 65 | 74 20 65 61 63 68 20 66 |, and se|t each f|
|000007c0| 61 63 74 6f 72 20 65 71 | 75 61 6c 20 74 6f 20 7a |actor eq|ual to z|
|000007d0| 65 72 6f 2e 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |ero.....|.. |
|000007e0| 20 20 20 28 11 33 78 20 | 11 31 2b 20 35 29 28 11 | (.3x |.1+ 5)(.|
|000007f0| 33 78 20 11 31 2d 20 32 | 29 20 3d 20 30 20 20 20 |3x .1- 2|) = 0 |
|00000800| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000810| 20 20 12 31 11 32 46 61 | 63 74 6f 72 11 31 12 30 | .1.2Fa|ctor.1.0|
|00000820| 0d 0a 00 0d 0b 00 20 20 | 20 20 20 20 20 20 20 20 |...... | |
|00000830| 20 20 20 20 20 20 20 20 | 11 33 78 20 11 31 2b 20 | |.3x .1+ |
|00000840| 35 20 3d 20 30 20 20 20 | 11 34 35 35 36 20 20 20 |5 = 0 |.4556 |
|00000850| 11 33 78 20 11 31 3d 20 | 2d 35 20 20 20 20 20 20 |.3x .1= |-5 |
|00000860| 12 31 11 32 53 65 74 20 | 66 69 72 73 74 20 66 61 |.1.2Set |first fa|
|00000870| 63 74 6f 72 20 65 71 75 | 61 6c 20 74 6f 20 30 11 |ctor equ|al to 0.|
|00000880| 31 12 30 0d 0a 00 0d 0b | 00 20 20 20 20 20 20 20 |1.0.....|. |
|00000890| 20 20 20 20 20 20 20 20 | 20 20 20 11 33 78 20 11 | | .3x .|
|000008a0| 31 2d 20 32 20 3d 20 30 | 20 20 20 11 34 35 35 36 |1- 2 = 0| .4556|
|000008b0| 20 20 20 11 33 78 20 11 | 31 3d 20 32 20 20 20 20 | .3x .|1= 2 |
|000008c0| 20 20 20 12 31 11 32 53 | 65 74 20 73 65 63 6f 6e | .1.2S|et secon|
|000008d0| 64 20 66 61 63 74 6f 72 | 20 65 71 75 61 6c 20 74 |d factor| equal t|
|000008e0| 6f 20 30 11 31 12 30 0d | 0a 00 0d 0b 00 49 66 20 |o 0.1.0.|.....If |
|000008f0| 74 68 65 20 74 77 6f 20 | 66 61 63 74 6f 72 73 20 |the two |factors |
|00000900| 6f 66 20 61 20 71 75 61 | 64 72 61 74 69 63 20 65 |of a qua|dratic e|
|00000910| 71 75 61 74 69 6f 6e 20 | 69 6e 20 73 74 61 6e 64 |quation |in stand|
|00000920| 61 72 64 20 66 6f 72 6d | 20 61 72 65 20 69 64 65 |ard form| are ide|
|00000930| 6e 74 69 63 61 6c 2c 20 | 0d 0a 00 74 68 65 6e 20 |ntical, |...then |
|00000940| 74 68 65 20 63 6f 72 72 | 65 73 70 6f 6e 64 69 6e |the corr|espondin|
|00000950| 67 20 73 6f 6c 75 74 69 | 6f 6e 20 69 73 20 63 61 |g soluti|on is ca|
|00000960| 6c 6c 65 64 20 61 20 12 | 31 64 6f 75 62 6c 65 12 |lled a .|1double.|
|00000970| 30 20 6f 72 20 12 31 72 | 65 70 65 61 74 65 64 20 |0 or .1r|epeated |
|00000980| 73 6f 6c 75 74 69 6f 6e | 12 30 2e 0d 0a 00 53 65 |solution|.0....Se|
|00000990| 63 74 69 6f 6e 20 31 2e | 34 20 20 51 75 61 64 72 |ction 1.|4 Quadr|
|000009a0| 61 74 69 63 20 45 71 75 | 61 74 69 6f 6e 73 20 61 |atic Equ|ations a|
|000009b0| 6e 64 20 41 70 70 6c 69 | 63 61 74 69 6f 6e 73 20 |nd Appli|cations |
|000009c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000009d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000009e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000009f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000a00| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 11 31 54 68 | .2|2....1Th|
|00000a10| 65 72 65 20 69 73 20 61 | 20 6e 69 63 65 20 73 68 |ere is a| nice sh|
|00000a20| 6f 72 74 63 75 74 20 66 | 6f 72 20 73 6f 6c 76 69 |ortcut f|or solvi|
|00000a30| 6e 67 20 71 75 61 64 72 | 61 74 69 63 20 65 71 75 |ng quadr|atic equ|
|00000a40| 61 74 69 6f 6e 73 20 6f | 66 20 74 68 65 20 66 6f |ations o|f the fo|
|00000a50| 72 6d 20 20 11 33 75 20 | 20 11 31 3d 20 11 33 64 |rm .3u | .1= .3d|
|00000a60| 0d 0a 00 11 31 77 68 65 | 72 65 20 11 33 75 20 11 |....1whe|re .3u .|
|00000a70| 31 69 73 20 61 6e 20 61 | 6c 67 65 62 72 61 69 63 |1is an a|lgebraic|
|00000a80| 20 65 78 70 72 65 73 73 | 69 6f 6e 20 61 6e 64 20 | express|ion and |
|00000a90| 11 33 64 20 11 31 3e 20 | 30 2e 20 20 54 68 65 20 |.3d .1> |0. The |
|00000aa0| 6d 65 74 68 6f 64 20 69 | 73 20 63 61 6c 6c 65 64 |method i|s called|
|00000ab0| 20 12 31 65 78 74 72 61 | 63 74 69 6e 67 0d 0a 00 | .1extra|cting...|
|00000ac0| 73 71 75 61 72 65 20 72 | 6f 6f 74 73 12 30 20 61 |square r|oots.0 a|
|00000ad0| 6e 64 20 69 6e 76 6f 6c | 76 65 73 20 74 61 6b 69 |nd invol|ves taki|
|00000ae0| 6e 67 20 74 68 65 20 73 | 71 75 61 72 65 20 72 6f |ng the s|quare ro|
|00000af0| 6f 74 20 6f 66 20 62 6f | 74 68 20 73 69 64 65 73 |ot of bo|th sides|
|00000b00| 20 6f 66 20 74 68 65 0d | 0a 00 65 71 75 61 74 69 | of the.|..equati|
|00000b10| 6f 6e 2e 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 |on.... | |
|00000b20| 20 20 20 20 11 32 32 0d | 0b 00 11 31 54 68 65 20 | .22.|...1The |
|00000b30| 65 71 75 61 74 69 6f 6e | 20 11 33 75 20 20 11 31 |equation| .3u .1|
|00000b40| 3d 20 11 33 64 11 31 2c | 20 77 68 65 72 65 20 11 |= .3d.1,| where .|
|00000b50| 33 64 20 11 31 3e 20 30 | 20 68 61 73 20 65 78 61 |3d .1> 0| has exa|
|00000b60| 63 74 6c 79 20 74 77 6f | 20 73 6f 6c 75 74 69 6f |ctly two| solutio|
|00000b70| 6e 73 3a 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 |ns:... | |
|00000b80| 20 20 20 20 20 20 20 20 | 20 20 11 34 44 32 20 20 | | .4D2 |
|00000b90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000ba0| 20 20 20 44 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | D2...| |
|00000bb0| 20 20 20 20 20 20 20 11 | 33 75 20 11 31 3d 20 11 | .|3u .1= .|
|00000bc0| 34 53 20 11 33 64 20 20 | 20 20 20 20 11 31 61 6e |4S .3d | .1an|
|00000bd0| 64 20 20 20 20 20 20 11 | 33 75 20 11 31 3d 20 2d |d .|3u .1= -|
|00000be0| 11 34 53 20 11 33 64 11 | 31 2e 0d 0a 00 20 20 20 |.4S .3d.|1.... |
|00000bf0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c00| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c10| 20 20 20 20 20 20 20 20 | 20 20 11 34 44 32 0d 0b | | .4D2..|
|00000c20| 00 11 31 54 68 65 73 65 | 20 73 6f 6c 75 74 69 6f |..1These| solutio|
|00000c30| 6e 73 20 63 61 6e 20 61 | 6c 73 6f 20 62 65 20 77 |ns can a|lso be w|
|00000c40| 72 69 74 74 65 6e 20 61 | 73 20 11 33 75 20 11 31 |ritten a|s .3u .1|
|00000c50| 3d 20 11 34 2b 53 20 11 | 33 64 11 31 2e 0d 0a 00 |= .4+S .|3d.1....|
|00000c60| 0d 0b 00 45 78 61 6d 70 | 6c 65 73 3a 0d 0a 00 20 |...Examp|les:... |
|00000c70| 20 20 20 20 20 20 20 20 | 20 20 20 20 11 32 32 20 | | .22 |
|00000c80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000c90| 20 20 20 20 20 20 20 11 | 34 44 32 32 0d 0b 00 20 | .|4D22... |
|00000ca0| 20 20 20 20 20 20 20 20 | 20 20 20 11 33 78 20 20 | | .3x |
|00000cb0| 11 31 3d 20 31 36 20 20 | 20 20 20 11 34 35 35 36 |.1= 16 | .4556|
|00000cc0| 20 20 20 20 20 11 33 78 | 20 11 31 3d 20 11 34 2b | .3x| .1= .4+|
|00000cd0| 53 20 11 31 31 36 20 20 | 20 20 11 34 35 35 36 20 |S .116 | .4556 |
|00000ce0| 20 20 20 11 33 78 20 11 | 31 3d 20 11 34 2b 20 11 | .3x .|1= .4+ .|
|00000cf0| 31 34 0d 0a 00 20 20 20 | 20 20 20 20 20 20 20 20 |14... | |
|00000d00| 20 20 11 32 32 20 20 20 | 20 20 20 20 20 20 20 20 | .22 | |
|00000d10| 20 20 20 20 20 20 20 32 | 20 20 20 20 20 20 20 20 | 2| |
|00000d20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00000d30| 20 11 34 44 32 0d 0b 00 | 20 20 20 20 20 20 20 20 | .4D2...| |
|00000d40| 20 20 20 11 31 32 11 33 | 78 20 20 11 31 3d 20 31 | .12.3|x .1= 1|
|00000d50| 30 20 20 20 20 20 11 34 | 35 35 36 20 20 20 20 11 |0 .4|556 .|
|00000d60| 33 78 20 20 11 31 3d 20 | 35 20 20 20 20 20 20 20 |3x .1= |5 |
|00000d70| 20 11 34 35 35 36 20 20 | 20 20 11 33 78 20 11 31 | .4556 | .3x .1|
|00000d80| 3d 20 11 34 2b 53 20 11 | 31 35 0d 0a 00 53 65 63 |= .4+S .|15...Sec|
|00000d90| 74 69 6f 6e 20 31 2e 34 | 20 20 51 75 61 64 72 61 |tion 1.4| Quadra|
|00000da0| 74 69 63 20 45 71 75 61 | 74 69 6f 6e 73 20 61 6e |tic Equa|tions an|
|00000db0| 64 20 41 70 70 6c 69 63 | 61 74 69 6f 6e 73 41 20 |d Applic|ationsA |
|00000dc0| 6d 6f 72 65 20 67 65 6e | 65 72 61 6c 20 74 65 63 |more gen|eral tec|
|00000dd0| 68 6e 69 71 75 65 20 74 | 68 61 6e 20 66 61 63 74 |hnique t|han fact|
|00000de0| 6f 72 69 6e 67 2c 20 66 | 6f 72 20 66 69 6e 64 69 |oring, f|or findi|
|00000df0| 6e 67 20 73 6f 6c 75 74 | 69 6f 6e 73 20 6f 66 20 |ng solut|ions of |
|00000e00| 61 20 71 75 61 64 72 61 | 74 69 63 0d 0a 00 65 71 |a quadra|tic...eq|
|00000e10| 75 61 74 69 6f 6e 2c 20 | 69 73 20 63 61 6c 6c 65 |uation, |is calle|
|00000e20| 64 20 12 31 63 6f 6d 70 | 6c 65 74 69 6e 67 20 74 |d .1comp|leting t|
|00000e30| 68 65 20 73 71 75 61 72 | 65 12 30 2e 20 20 54 6f |he squar|e.0. To|
|00000e40| 20 63 6f 6d 70 6c 65 74 | 65 20 74 68 65 20 73 71 | complet|e the sq|
|00000e50| 75 61 72 65 20 66 6f 72 | 0d 0a 00 20 20 20 20 20 |uare for|... |
|00000e60| 20 11 32 32 0d 0b 00 20 | 20 20 20 20 11 33 78 20 | .22... | .3x |
|00000e70| 20 2b 20 62 78 0d 0a 00 | 20 20 20 20 20 20 20 20 | + bx...| |
|00000e80| 20 20 20 20 11 32 32 0d | 0b 00 11 31 77 65 20 61 | .22.|...1we a|
|00000e90| 64 64 20 28 11 33 62 11 | 31 2f 32 29 20 2c 20 77 |dd (.3b.|1/2) , w|
|00000ea0| 68 69 63 68 20 69 73 20 | 74 68 65 20 73 71 75 61 |hich is |the squa|
|00000eb0| 72 65 20 6f 66 20 68 61 | 6c 66 20 74 68 65 20 63 |re of ha|lf the c|
|00000ec0| 6f 65 66 66 69 63 69 65 | 6e 74 20 6f 66 20 11 33 |oefficie|nt of .3|
|00000ed0| 78 11 31 2e 20 20 54 68 | 75 73 2c 20 77 65 0d 0a |x.1. Th|us, we..|
|00000ee0| 00 68 61 76 65 0d 0b 00 | 20 20 20 20 20 20 20 20 |.have...| |
|00000ef0| 20 20 20 20 20 20 20 11 | 34 28 20 29 11 32 32 20 | .|4( ).22 |
|00000f00| 20 20 11 34 28 20 20 20 | 20 20 29 11 32 32 0d 0b | .4( | ).22..|
|00000f10| 00 20 20 20 20 20 20 32 | 20 20 20 20 20 20 20 20 |. 2| |
|00000f20| 11 34 21 11 33 62 11 34 | 21 20 20 20 20 21 20 20 |.4!.3b.4|! ! |
|00000f30| 20 20 11 33 62 11 34 21 | 0d 0b 00 20 20 20 20 20 | .3b.4!|... |
|00000f40| 11 33 78 20 20 2b 20 62 | 78 20 2b 20 11 34 21 32 |.3x + b|x + .4!2|
|00000f50| 21 20 20 11 33 3d 20 11 | 34 21 11 33 78 20 2b 20 |! .3= .|4!.3x + |
|00000f60| 11 34 32 21 20 11 33 2e | 0d 0b 00 20 20 20 20 20 |.42! .3.|... |
|00000f70| 20 20 20 20 20 20 20 20 | 20 20 11 34 21 11 33 32 | | .4!.32|
|00000f80| 11 34 21 20 20 20 20 21 | 20 20 20 20 11 33 32 11 |.4! !| .32.|
|00000f90| 34 21 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |4!... | |
|00000fa0| 20 20 20 20 39 20 30 20 | 20 20 20 39 20 20 20 20 | 9 0 | 9 |
|00000fb0| 20 30 0d 0a 00 11 31 57 | 68 65 6e 20 77 65 20 61 | 0....1W|hen we a|
|00000fc0| 72 65 20 61 73 6b 65 64 | 20 74 6f 20 73 6f 6c 76 |re asked| to solv|
|00000fd0| 65 20 61 20 71 75 61 64 | 72 61 74 69 63 20 65 71 |e a quad|ratic eq|
|00000fe0| 75 61 74 69 6f 6e 20 77 | 69 74 68 20 61 20 6c 65 |uation w|ith a le|
|00000ff0| 61 64 69 6e 67 20 63 6f | 65 66 66 69 63 69 65 6e |ading co|efficien|
|00001000| 74 0d 0a 00 6f 74 68 65 | 72 20 74 68 61 6e 20 31 |t...othe|r than 1|
|00001010| 2c 20 77 65 20 66 69 72 | 73 74 20 64 69 76 69 64 |, we fir|st divid|
|00001020| 65 20 62 6f 74 68 20 73 | 69 64 65 73 20 6f 66 20 |e both s|ides of |
|00001030| 74 68 65 20 65 71 75 61 | 74 69 6f 6e 20 62 79 20 |the equa|tion by |
|00001040| 74 68 65 20 6c 65 61 64 | 69 6e 67 0d 0a 00 63 6f |the lead|ing...co|
|00001050| 65 66 66 69 63 69 65 6e | 74 2e 20 20 57 65 20 74 |efficien|t. We t|
|00001060| 68 65 6e 20 63 6f 6c 6c | 65 63 74 20 74 68 65 20 |hen coll|ect the |
|00001070| 63 6f 6e 73 74 61 6e 74 | 20 74 65 72 6d 20 6f 6e |constant| term on|
|00001080| 20 74 68 65 20 6f 70 70 | 6f 73 69 74 65 20 73 69 | the opp|osite si|
|00001090| 64 65 20 6f 66 20 74 68 | 65 0d 0a 00 20 20 20 20 |de of th|e... |
|000010a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000010c0| 20 20 20 20 20 20 20 20 | 20 20 11 32 32 0d 0b 00 | | .22...|
|000010d0| 11 31 65 71 75 61 74 69 | 6f 6e 20 66 72 6f 6d 20 |.1equati|on from |
|000010e0| 74 68 65 20 76 61 72 69 | 61 62 6c 65 20 74 65 72 |the vari|able ter|
|000010f0| 6d 73 20 61 6e 64 20 61 | 64 64 20 28 11 33 62 11 |ms and a|dd (.3b.|
|00001100| 31 2f 32 29 20 20 74 6f | 20 11 33 62 6f 74 68 20 |1/2) to| .3both |
|00001110| 11 31 73 69 64 65 73 20 | 6f 66 20 74 68 65 20 65 |.1sides |of the e|
|00001120| 71 75 61 74 69 6f 6e 2e | 0d 0a 00 0d 0a 00 41 6e |quation.|......An|
|00001130| 6f 74 68 65 72 20 75 73 | 65 20 6f 66 20 74 68 69 |other us|e of thi|
|00001140| 73 20 74 65 63 68 6e 69 | 71 75 65 20 69 73 20 72 |s techni|que is r|
|00001150| 65 77 72 69 74 69 6e 67 | 20 61 6c 67 65 62 72 61 |ewriting| algebra|
|00001160| 69 63 20 65 78 70 72 65 | 73 73 69 6f 6e 73 20 61 |ic expre|ssions a|
|00001170| 73 20 61 20 73 75 6d 20 | 6f 72 0d 0a 00 20 20 20 |s a sum |or... |
|00001180| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001190| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000011a0| 20 20 11 32 32 0d 0b 00 | 11 31 64 69 66 66 65 72 | .22...|.1differ|
|000011b0| 65 6e 63 65 20 6f 66 20 | 73 71 75 61 72 65 73 2e |ence of |squares.|
|000011c0| 20 20 46 6f 72 20 65 78 | 61 6d 70 6c 65 20 11 33 | For ex|ample .3|
|000011d0| 78 20 20 11 31 2b 20 32 | 11 33 78 20 11 31 2b 20 |x .1+ 2|.3x .1+ |
|000011e0| 33 20 63 61 6e 20 62 65 | 20 77 72 69 74 74 65 6e |3 can be| written|
|000011f0| 20 61 73 0d 0a 00 20 20 | 20 20 20 20 11 32 32 20 | as... | .22 |
|00001200| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001210| 20 20 20 20 20 20 32 20 | 20 20 11 34 28 20 44 32 | 2 | .4( D2|
|00001220| 29 11 32 32 0d 0b 00 20 | 20 20 20 20 11 33 78 20 |).22... | .3x |
|00001230| 20 2b 20 32 78 20 2b 20 | 31 20 11 31 2b 20 32 20 | + 2x + |1 .1+ 2 |
|00001240| 3d 20 28 78 20 2b 20 31 | 29 20 20 2b 20 11 34 21 |= (x + 1|) + .4!|
|00001250| 53 20 11 31 32 11 34 21 | 20 11 31 2e 20 11 34 0d |S .12.4!| .1. .4.|
|00001260| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001270| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001280| 20 20 20 20 39 20 20 20 | 30 20 20 20 20 20 20 20 | 9 |0 |
|00001290| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000012a0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000012b0| 20 20 20 20 20 20 20 20 | 11 31 2e 0d 0a 00 53 65 | |.1....Se|
|000012c0| 63 74 69 6f 6e 20 31 2e | 34 20 20 51 75 61 64 72 |ction 1.|4 Quadr|
|000012d0| 61 74 69 63 20 45 71 75 | 61 74 69 6f 6e 73 20 61 |atic Equ|ations a|
|000012e0| 6e 64 20 41 70 70 6c 69 | 63 61 74 69 6f 6e 73 0d |nd Appli|cations.|
|000012f0| 0b 00 4f 6e 65 20 63 6f | 6d 6d 6f 6e 20 12 31 61 |..One co|mmon .1a|
|00001300| 70 70 6c 69 63 61 74 69 | 6f 6e 20 6f 66 20 71 75 |pplicati|on of qu|
|00001310| 61 64 72 61 74 69 63 20 | 65 71 75 61 74 69 6f 6e |adratic |equation|
|00001320| 73 12 30 20 69 6e 76 6f | 6c 76 65 73 20 61 6e 20 |s.0 invo|lves an |
|00001330| 6f 62 6a 65 63 74 20 74 | 68 61 74 20 69 73 0d 0a |object t|hat is..|
|00001340| 00 66 61 6c 6c 69 6e 67 | 20 28 6f 72 20 70 72 6f |.falling| (or pro|
|00001350| 6a 65 63 74 65 64 20 69 | 6e 74 6f 20 74 68 65 20 |jected i|nto the |
|00001360| 61 69 72 29 2e 20 20 54 | 68 65 20 67 65 6e 65 72 |air). T|he gener|
|00001370| 61 6c 20 65 71 75 61 74 | 69 6f 6e 20 74 68 61 74 |al equat|ion that|
|00001380| 20 67 69 76 65 73 20 74 | 68 65 20 0d 0a 00 68 65 | gives t|he ...he|
|00001390| 69 67 68 74 20 6f 66 20 | 73 75 63 68 20 61 6e 20 |ight of |such an |
|000013a0| 6f 62 6a 65 63 74 20 69 | 73 20 63 61 6c 6c 65 64 |object i|s called|
|000013b0| 20 61 20 12 31 70 6f 73 | 69 74 69 6f 6e 20 65 71 | a .1pos|ition eq|
|000013c0| 75 61 74 69 6f 6e 12 30 | 2c 20 61 6e 64 20 6f 6e |uation.0|, and on|
|000013d0| 20 74 68 65 20 65 61 72 | 74 68 27 73 0d 0a 00 73 | the ear|th's...s|
|000013e0| 75 72 66 61 63 65 20 69 | 74 20 68 61 73 20 74 68 |urface i|t has th|
|000013f0| 65 20 66 6f 72 6d 0d 0a | 00 20 20 20 20 20 20 20 |e form..|. |
|00001400| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001410| 20 20 20 20 11 32 32 0d | 0b 00 20 20 20 20 20 20 | .22.|.. |
|00001420| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 33 73 | | .3s|
|00001430| 20 11 31 3d 20 2d 31 36 | 11 33 74 20 20 11 31 2b | .1= -16|.3t .1+|
|00001440| 20 11 33 76 20 74 20 11 | 31 2b 20 11 33 73 20 11 | .3v t .|1+ .3s .|
|00001450| 31 2e 0d 0b 00 20 20 20 | 20 20 20 20 20 20 20 20 |1.... | |
|00001460| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001470| 20 20 20 20 20 11 32 30 | 20 20 20 20 20 30 0d 0a | .20| 0..|
|00001480| 00 11 31 49 6e 20 74 68 | 69 73 20 65 71 75 61 74 |..1In th|is equat|
|00001490| 69 6f 6e 2c 20 11 33 73 | 20 11 31 72 65 70 72 65 |ion, .3s| .1repre|
|000014a0| 73 65 6e 74 73 20 74 68 | 65 20 68 65 69 67 68 74 |sents th|e height|
|000014b0| 20 6f 66 20 74 68 65 20 | 6f 62 6a 65 63 74 20 28 | of the |object (|
|000014c0| 69 6e 20 66 65 65 74 29 | 2c 20 11 33 76 0d 0b 00 |in feet)|, .3v...|
|000014d0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014e0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000014f0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001500| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001510| 20 20 20 20 11 32 30 0d | 0a 00 11 31 72 65 70 72 | .20.|...1repr|
|00001520| 65 73 65 6e 74 73 20 74 | 68 65 20 6f 72 69 67 69 |esents t|he origi|
|00001530| 6e 61 6c 20 76 65 6c 6f | 63 69 74 79 20 28 69 6e |nal velo|city (in|
|00001540| 20 66 65 65 74 20 70 65 | 72 20 73 65 63 6f 6e 64 | feet pe|r second|
|00001550| 29 2c 20 11 33 73 20 20 | 11 31 72 65 70 72 65 73 |), .3s |.1repres|
|00001560| 65 6e 74 73 20 74 68 65 | 0d 0b 00 20 20 20 20 20 |ents the|... |
|00001570| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001580| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001590| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000015a0| 20 20 20 11 32 30 0d 0a | 00 11 31 6f 72 69 67 69 | .20..|..1origi|
|000015b0| 6e 61 6c 20 68 65 69 67 | 68 74 20 28 69 6e 20 66 |nal heig|ht (in f|
|000015c0| 65 65 74 29 2c 20 61 6e | 64 20 11 33 74 20 11 31 |eet), an|d .3t .1|
|000015d0| 72 65 70 72 65 73 65 6e | 74 73 20 74 68 65 20 74 |represen|ts the t|
|000015e0| 69 6d 65 20 28 69 6e 20 | 73 65 63 6f 6e 64 73 29 |ime (in |seconds)|
|000015f0| 2e 0d 0a 00 0d 0b 00 41 | 6e 6f 74 68 65 72 20 74 |.......A|nother t|
|00001600| 79 70 65 20 6f 66 20 61 | 70 70 6c 69 63 61 74 69 |ype of a|pplicati|
|00001610| 6f 6e 20 74 68 61 74 20 | 6f 66 74 65 6e 20 69 6e |on that |often in|
|00001620| 76 6f 6c 76 65 73 20 61 | 20 71 75 61 64 72 61 74 |volves a| quadrat|
|00001630| 69 63 20 65 71 75 61 74 | 69 6f 6e 20 69 73 20 6f |ic equat|ion is o|
|00001640| 6e 65 0d 0a 00 64 65 61 | 6c 69 6e 67 20 77 69 74 |ne...dea|ling wit|
|00001650| 68 20 74 68 65 20 68 79 | 70 6f 74 65 6e 75 73 65 |h the hy|potenuse|
|00001660| 20 6f 66 20 61 20 72 69 | 67 68 74 20 74 72 69 61 | of a ri|ght tria|
|00001670| 6e 67 6c 65 2e 20 20 52 | 65 63 61 6c 6c 20 66 72 |ngle. R|ecall fr|
|00001680| 6f 6d 20 67 65 6f 6d 65 | 74 72 79 20 74 68 61 74 |om geome|try that|
|00001690| 20 0d 0a 00 74 68 65 20 | 73 69 64 65 73 20 6f 66 | ...the |sides of|
|000016a0| 20 61 20 72 69 67 68 74 | 20 74 72 69 61 6e 67 6c | a right| triangl|
|000016b0| 65 20 61 72 65 20 72 65 | 6c 61 74 65 64 20 62 79 |e are re|lated by|
|000016c0| 20 61 20 66 6f 72 6d 75 | 6c 61 20 63 61 6c 6c 65 | a formu|la calle|
|000016d0| 64 20 74 68 65 20 12 31 | 50 79 74 68 61 67 6f 72 |d the .1|Pythagor|
|000016e0| 65 61 6e 0d 0a 00 54 68 | 65 6f 72 65 6d 12 30 2e |ean...Th|eorem.0.|
|000016f0| 20 20 54 68 69 73 20 74 | 68 65 6f 72 65 6d 20 73 | This t|heorem s|
|00001700| 74 61 74 65 73 20 74 68 | 61 74 20 69 66 20 11 33 |tates th|at if .3|
|00001710| 61 20 11 31 61 6e 64 20 | 11 33 62 20 11 31 61 72 |a .1and |.3b .1ar|
|00001720| 65 20 74 68 65 20 6c 65 | 6e 67 74 68 73 20 6f 66 |e the le|ngths of|
|00001730| 20 74 68 65 20 6c 65 67 | 73 20 6f 66 20 61 0d 0a | the leg|s of a..|
|00001740| 00 72 69 67 68 74 20 74 | 72 69 61 6e 67 6c 65 20 |.right t|riangle |
|00001750| 61 6e 64 20 11 33 63 20 | 11 31 69 73 20 74 68 65 |and .3c |.1is the|
|00001760| 20 6c 65 6e 67 74 68 20 | 6f 66 20 74 68 65 20 68 | length |of the h|
|00001770| 79 70 6f 74 65 6e 75 73 | 65 2c 20 74 68 65 6e 0d |ypotenus|e, then.|
|00001780| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001790| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000017a0| 11 32 32 20 20 20 20 32 | 20 20 20 20 32 0d 0b 00 |.22 2| 2...|
|000017b0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|000017c0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 33 61 | | .3a|
|000017d0| 20 20 11 31 2b 20 11 33 | 62 20 20 11 31 3d 20 11 | .1+ .3|b .1= .|
|000017e0| 33 63 20 11 31 2e 0d 0a | 00 53 65 63 74 69 6f 6e |3c .1...|.Section|
|000017f0| 20 31 2e 34 20 20 51 75 | 61 64 72 61 74 69 63 20 | 1.4 Qu|adratic |
|00001800| 45 71 75 61 74 69 6f 6e | 73 20 61 6e 64 20 41 70 |Equation|s and Ap|
|00001810| 70 6c 69 63 61 74 69 6f | 6e 73 0d 0b 00 49 6e 20 |plicatio|ns...In |
|00001820| 74 68 69 73 20 73 65 63 | 74 69 6f 6e 2c 20 77 65 |this sec|tion, we|
|00001830| 20 75 73 65 64 20 74 68 | 65 20 74 65 63 68 6e 69 | used th|e techni|
|00001840| 71 75 65 20 6f 66 20 63 | 6f 6d 70 6c 65 74 69 6e |que of c|ompletin|
|00001850| 67 20 74 68 65 20 73 71 | 75 61 72 65 2e 20 20 49 |g the sq|uare. I|
|00001860| 6e 20 74 68 65 20 74 65 | 78 74 20 0d 0a 00 28 6f |n the te|xt ...(o|
|00001870| 6e 20 70 61 67 65 20 31 | 32 32 29 2c 20 77 65 20 |n page 1|22), we |
|00001880| 63 6f 6d 70 6c 65 74 65 | 20 74 68 65 20 73 71 75 |complete| the squ|
|00001890| 61 72 65 20 66 6f 72 20 | 74 68 65 20 67 65 6e 65 |are for |the gene|
|000018a0| 72 61 6c 20 71 75 61 64 | 72 61 74 69 63 20 65 71 |ral quad|ratic eq|
|000018b0| 75 61 74 69 6f 6e 20 28 | 69 6e 20 0d 0a 00 73 74 |uation (|in ...st|
|000018c0| 61 6e 64 61 72 64 20 66 | 6f 72 6d 29 0d 0a 00 20 |andard f|orm)... |
|000018d0| 20 20 20 20 20 20 11 32 | 32 0d 0b 00 20 20 20 20 | .2|2... |
|000018e0| 20 11 33 61 78 20 20 2b | 20 62 78 20 2b 20 63 20 | .3ax +| bx + c |
|000018f0| 3d 20 30 2c 20 20 61 20 | 11 34 3d 20 11 33 30 0d |= 0, a |.4= .30.|
|00001900| 0a 00 0d 0b 00 11 31 61 | 6e 64 20 66 69 6e 64 20 |......1a|nd find |
|00001910| 74 68 61 74 20 69 74 20 | 68 61 73 20 74 68 65 20 |that it |has the |
|00001920| 73 6f 6c 75 74 69 6f 6e | 73 0d 0a 00 20 20 20 20 |solution|s... |
|00001930| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 11 34 67 | | .4g|
|00001940| 32 32 32 32 32 32 32 20 | 20 20 20 20 20 20 20 20 |2222222 | |
|00001950| 20 67 32 32 32 32 32 32 | 32 0d 0b 00 20 20 20 20 | g222222|2... |
|00001960| 20 20 20 20 20 20 20 20 | 20 20 20 20 66 20 11 32 | | f .2|
|00001970| 32 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |2 | |
|00001980| 11 34 66 20 11 32 32 0d | 0b 00 20 20 20 20 20 20 |.4f .22.|.. |
|00001990| 20 20 20 20 20 11 33 62 | 20 20 20 11 34 76 20 11 | .3b| .4v .|
|000019a0| 33 62 20 20 2d 20 34 61 | 63 20 20 20 2d 62 20 11 |3b - 4a|c -b .|
|000019b0| 34 2b 20 76 20 11 33 62 | 20 20 2d 20 34 61 63 0d |4+ v .3b| - 4ac.|
|000019c0| 0b 00 20 20 20 20 20 78 | 20 3d 20 2d 11 34 32 32 |.. x| = -.422|
|000019d0| 20 2b 20 32 32 32 32 32 | 32 32 32 32 32 20 11 31 | + 22222|22222 .1|
|000019e0| 3d 20 11 34 32 32 32 32 | 32 32 32 32 32 32 32 32 |= .42222|22222222|
|000019f0| 32 32 32 11 31 2e 0d 0b | 00 20 20 20 20 20 20 20 |222.1...|. |
|00001a00| 20 20 20 11 33 32 61 20 | 20 20 20 20 20 20 32 61 | .32a | 2a|
|00001a10| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 32 61 | | 2a|
|00001a20| 0d 0a 00 0d 0b 00 11 31 | 54 68 69 73 20 69 73 20 |.......1|This is |
|00001a30| 63 61 6c 6c 65 64 20 74 | 68 65 20 12 31 51 75 61 |called t|he .1Qua|
|00001a40| 64 72 61 74 69 63 20 46 | 6f 72 6d 75 6c 61 12 30 |dratic F|ormula.0|
|00001a50| 2c 20 61 6e 64 20 79 6f | 75 20 73 68 6f 75 6c 64 |, and yo|u should|
|00001a60| 20 63 6f 6d 6d 69 74 20 | 74 68 69 73 20 66 6f 72 | commit |this for|
|00001a70| 6d 75 6c 61 20 74 6f 20 | 0d 0a 00 20 20 20 20 20 |mula to |... |
|00001a80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001a90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001aa0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ab0| 20 20 11 32 32 0d 0b 00 | 11 31 6d 65 6d 6f 72 79 | .22...|.1memory|
|00001ac0| 2e 20 20 57 65 20 63 61 | 6c 6c 20 74 68 65 20 71 |. We ca|ll the q|
|00001ad0| 75 61 6e 74 69 74 79 20 | 75 6e 64 65 72 20 74 68 |uantity |under th|
|00001ae0| 65 20 72 61 64 69 63 61 | 6c 20 73 69 67 6e 2c 20 |e radica|l sign, |
|00001af0| 11 33 62 20 20 11 31 2d | 20 34 11 33 61 63 11 31 |.3b .1-| 4.3ac.1|
|00001b00| 2c 20 74 68 65 20 12 31 | 64 69 73 63 72 69 2d 0d |, the .1|discri-.|
|00001b10| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001b20| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001b30| 20 20 20 20 20 20 20 11 | 32 12 30 32 12 31 0d 0b | .|2.02.1..|
|00001b40| 00 11 31 6d 69 6e 61 6e | 74 12 30 20 6f 66 20 74 |..1minan|t.0 of t|
|00001b50| 68 65 20 71 75 61 64 72 | 61 74 69 63 20 65 78 70 |he quadr|atic exp|
|00001b60| 72 65 73 73 69 6f 6e 20 | 11 33 61 78 20 20 2b 20 |ression |.3ax + |
|00001b70| 62 78 20 2b 20 63 11 31 | 2e 20 20 20 20 20 20 20 |bx + c.1|. |
|00001b80| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001b90| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001ba0| 20 20 2e 0d 0a 00 53 65 | 63 74 69 6f 6e 20 31 2e | ....Se|ction 1.|
|00001bb0| 34 20 20 51 75 61 64 72 | 61 74 69 63 20 45 71 75 |4 Quadr|atic Equ|
|00001bc0| 61 74 69 6f 6e 73 20 61 | 6e 64 20 41 70 70 6c 69 |ations a|nd Appli|
|00001bd0| 63 61 74 69 6f 6e 73 20 | 20 20 20 20 20 20 20 20 |cations | |
|00001be0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001bf0| 20 20 20 20 20 11 32 32 | 0d 0b 00 11 31 57 65 20 | .22|....1We |
|00001c00| 63 61 6e 20 12 31 75 73 | 65 20 74 68 65 20 64 69 |can .1us|e the di|
|00001c10| 73 63 72 69 6d 69 6e 61 | 6e 74 12 30 2c 20 11 33 |scrimina|nt.0, .3|
|00001c20| 62 20 20 11 31 2d 20 34 | 11 33 61 63 11 31 2c 20 |b .1- 4|.3ac.1, |
|00001c30| 6f 66 20 74 68 65 20 71 | 75 61 64 72 61 74 69 63 |of the q|uadratic|
|00001c40| 20 65 71 75 61 74 69 6f | 6e 20 0d 0a 00 20 20 20 | equatio|n ... |
|00001c50| 20 20 20 20 11 32 32 0d | 0b 00 20 20 20 20 20 11 | .22.|.. .|
|00001c60| 33 61 78 20 20 2b 20 62 | 78 20 2b 20 63 20 11 31 |3ax + b|x + c .1|
|00001c70| 3d 20 30 11 33 2c 20 20 | 61 20 11 34 3d 20 11 33 |= 0.3, |a .4= .3|
|00001c80| 30 0d 0a 00 0d 0b 00 11 | 31 74 6f 20 70 72 65 64 |0.......|1to pred|
|00001c90| 69 63 74 20 74 68 65 20 | 6e 61 74 75 72 65 20 6f |ict the |nature o|
|00001ca0| 66 20 74 68 65 20 12 31 | 73 6f 6c 75 74 69 6f 6e |f the .1|solution|
|00001cb0| 73 12 30 20 6f 66 20 74 | 68 65 20 65 71 75 61 74 |s.0 of t|he equat|
|00001cc0| 69 6f 6e 2e 0d 0a 00 0d | 0b 00 20 20 20 20 20 20 |ion.....|.. |
|00001cd0| 20 20 11 32 32 0d 0b 00 | 11 31 31 2e 20 20 49 66 | .22...|.11. If|
|00001ce0| 20 11 33 62 20 20 11 31 | 2d 20 34 11 33 61 63 20 | .3b .1|- 4.3ac |
|00001cf0| 11 31 3e 20 30 2c 20 74 | 68 65 6e 20 74 68 65 72 |.1> 0, t|hen ther|
|00001d00| 65 20 61 72 65 20 11 33 | 74 77 6f 20 64 69 73 74 |e are .3|two dist|
|00001d10| 69 6e 63 74 20 72 65 61 | 6c 20 73 6f 6c 75 74 69 |inct rea|l soluti|
|00001d20| 6f 6e 73 0d 0a 00 20 20 | 20 20 20 20 20 20 20 20 |ons... | |
|00001d30| 20 20 20 20 20 20 20 20 | 20 20 11 34 67 32 32 32 | | .4g222|
|00001d40| 32 32 32 32 0d 0b 00 20 | 20 20 20 20 20 20 20 20 |2222... | |
|00001d50| 20 20 20 20 20 20 20 20 | 20 20 66 20 11 32 32 0d | | f .22.|
|00001d60| 0b 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 11 |.. | .|
|00001d70| 33 2d 62 20 11 34 2b 20 | 76 20 11 33 62 20 20 2d |3-b .4+ |v .3b -|
|00001d80| 20 34 61 63 0d 0b 00 20 | 20 20 20 20 20 20 20 20 | 4ac... | |
|00001d90| 78 20 11 31 3d 20 11 34 | 32 32 32 32 32 32 32 32 |x .1= .4|22222222|
|00001da0| 32 32 32 32 32 32 32 11 | 31 2e 0d 0b 00 20 20 20 |2222222.|1.... |
|00001db0| 20 20 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 | | |
|00001dc0| 20 11 33 32 61 0d 0a 00 | 20 20 20 20 20 20 20 20 | .32a...| |
|00001dd0| 11 32 32 0d 0b 00 11 31 | 32 2e 20 20 49 66 20 11 |.22....1|2. If .|
|00001de0| 33 62 20 20 11 31 2d 20 | 34 11 33 61 63 20 11 31 |3b .1- |4.3ac .1|
|00001df0| 3d 20 30 2c 20 74 68 65 | 6e 20 74 68 65 72 65 20 |= 0, the|n there |
|00001e00| 69 73 20 11 33 6f 6e 65 | 20 72 65 70 65 61 74 65 |is .3one| repeate|
|00001e10| 64 20 72 65 61 6c 20 73 | 6f 6c 75 74 69 6f 6e 0d |d real s|olution.|
|00001e20| 0a 00 20 20 20 20 20 20 | 20 20 20 20 20 20 20 20 |.. | |
|00001e30| 20 62 0d 0b 00 20 20 20 | 20 20 20 20 20 20 78 20 | b... | x |
|00001e40| 3d 20 2d 11 34 32 32 11 | 33 2e 0d 0b 00 20 20 20 |= -.422.|3.... |
|00001e50| 20 20 20 20 20 20 20 20 | 20 20 20 32 61 0d 0a 00 | | 2a...|
|00001e60| 20 20 20 20 20 20 20 20 | 11 32 32 0d 0b 00 11 31 | |.22....1|
|00001e70| 33 2e 20 20 49 66 20 11 | 33 62 20 20 11 31 2d 20 |3. If .|3b .1- |
|00001e80| 34 11 33 61 63 20 11 31 | 3c 20 30 2c 20 74 68 65 |4.3ac .1|< 0, the|
|00001e90| 6e 20 74 68 65 72 65 20 | 61 72 65 20 11 33 6e 6f |n there |are .3no|
|00001ea0| 20 72 65 61 6c 20 73 6f | 6c 75 74 69 6f 6e 73 11 | real so|lutions.|
|00001eb0| 31 2e 0d 0a 00 41 00 00 | 00 0c 02 00 00 4d 31 00 |1....A..|.....M1.|
|00001ec0| 00 10 00 00 00 00 00 00 | 00 73 31 2d 34 00 7e 02 |........|.s1-4.~.|
|00001ed0| 00 00 8f 03 00 00 4d 31 | 00 00 4d 02 00 00 00 00 |......M1|..M.....|
|00001ee0| 00 00 73 31 2d 34 2d 31 | 00 3e 06 00 00 50 03 00 |..s1-4-1|.>...P..|
|00001ef0| 00 4d 31 00 00 0d 06 00 | 00 00 00 00 00 73 31 2d |.M1.....|.....s1-|
|00001f00| 34 2d 32 00 bf 09 00 00 | ce 03 00 00 4d 31 00 00 |4-2.....|....M1..|
|00001f10| 8e 09 00 00 00 00 00 00 | 73 31 2d 34 2d 33 00 be |........|s1-4-3..|
|00001f20| 0d 00 00 00 05 00 00 4d | 31 00 00 8d 0d 00 00 00 |.......M|1.......|
|00001f30| 00 00 00 73 31 2d 34 2d | 34 00 ef 12 00 00 fa 04 |...s1-4-|4.......|
|00001f40| 00 00 4d 31 00 00 be 12 | 00 00 00 00 00 00 73 31 |..M1....|......s1|
|00001f50| 2d 34 2d 35 00 1a 18 00 | 00 8c 03 00 00 4d 31 00 |-4-5....|.....M1.|
|00001f60| 00 e9 17 00 00 00 00 00 | 00 73 31 2d 34 2d 36 00 |........|.s1-4-6.|
|00001f70| d7 1b 00 00 de 02 00 00 | 4d 31 00 00 a6 1b 00 00 |........|M1......|
|00001f80| 00 00 00 00 73 31 2d 34 | 2d 37 00 |....s1-4|-7. |
+--------+-------------------------+-------------------------+--------+--------+